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Dear readers,
Artificial intelligence (AI) has evolved from a promising vision  
into a powerful enabler of modern engineering. What was once  
experimental is now shaping tangible solutions – accelerating  
processes, enhancing safety, and opening entirely new possibilities.

At FEV, we bring together decades of engineering expertise and  
cutting-edge AI technologies to deliver measurable value for our  
customers. Our approach is pragmatic: AI systems act as digital  
collaborators that learn, adapt, and support decision-making. With 
tools like FEV’s TARA Copilot, we are already streamlining safety-relat-
ed processes, while AI-driven simulations shorten development cycles 
and unlock innovative design pathways. Data-driven diagnostics  
further ensure reliability and efficiency across entire vehicle fleets.

But innovation is not only digital. The path to climate-neutral  
mobility requires diverse and practical solutions. Range-extended 
electric vehicles (REEVs) and long-range plug-in hybrids (PHEVs) are 
proving to be strong transitional technologies. In this issue, we share 
insights on how to develop scalable battery platforms, define the  
right performance indicators, and design optimized generators  
and inverters for series-hybrid architectures. These advances turn 
today’s challenges into tomorrow’s competitive advantages.

I invite you to explore the following pages for inspiration and  
opportunities to collaborate. Together, we can drive smarter  
engineering and shape a cleaner, more resilient mobility ecosystem 
that excites and empowers people around the world.

Enjoy the read!

Dr. Patrick Hupperich
President and CEO 
FEV Group



#1	� Turning AI in mobility into success —  
How FEV makes the difference P. 6

#2	� Turning agentic AI into a unique  
engineering advantage with FEV P. 8

#3	� FEV’s TARA Copilot - Saving customers 
time while increasing quality and  
consistency of results P. 14

#4	� Artificial intelligence in computer  
aided engineering P. 20

#5	� Data-driven anomaly detectors –  
Smarter diagnostics, less effort P. 28

#6	 �REEVs and long-range PHEVs –  
Bridging the gap to full electrification P. 36

#7	� Efficient range extension – Next-gen  
generators for hybrid architecture P. 44

#8	 Signature Solutions P. 48



#1
Turning AI in mobility  

into success — How FEV 
makes the difference

The automotive industry is undergoing not just incremental change, 
but structural disruption. New players are entering the market with 
entirely different principles — achieving development cycles up to 
50% faster and product cost advantages of as much as 45%. In this 
environment, traditional product development timelines and cost 
structures are becoming unsustainable. The pressure to innovate 
faster and more efficiently is immense.

To meet this challenge, leadership teams are turning to Artificial 
Intelligence (AI). However, AI is not a cure-all. It is a powerful set  
of tools that, when applied with strategic precision, can drive  
profound efficiencies. For the automotive sector, this translates into 
tangible advantages: streamlining system design and requirements 
engineering, co-piloting functional safety and cybersecurity  
assessments, accelerating complex simulation and testing cycles, 
optimizing powertrain calibration, reducing manual validation  
efforts, and embedding intelligent functions directly into vehicles. 
The objective is not to simply adopt AI, but to incorporate it for a 
lasting competitive advantage.

Many in the industry have already launched AI initiatives. Yet too 
often, companies fall into what we call ‘Pilotitis’ — a proliferation of 
promising pilot projects that never scale. The reason is usually the 
same: a missing link between technology and measurable business  
value. That is why we strongly believe that a clear AI strategy, 
with defined business cases and top-management support, is a 
non-negotiable prerequisite for success. Progress is also frequently 
stalled by fragmented data landscapes and legacy IT architecture. 
Therefore, our approach prioritizes the creation of a robust data 
foundation, transforming disparate data silos into a strategic asset 
for AI development. Finally, the “make-or-buy” dilemma further 
complicates decisions as AI functions are rapidly integrated into 
off-the-shelf software. As a technology-agnostic partner, FEV  
provides a neutral, outside-in perspective to help clients navigate 
these choices with long-term architectural integrity in mind.

Success with AI in the automotive sector requires navigating  
this complexity. It demands a partner who speaks both languages  
fluently: AI and automotive. AI consultants may understand the  
algorithms but not the intricacies of powertrain calibration.  
Seasoned automotive engineers may understand the vehicle but 
not the nuances of machine learning model governance. At FEV, 
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these disciplines converge. Our credibility is built on 45+ years of 
deep domain expertise across the vehicle development process. 
Our approach is therefore holistic and pragmatic, engaging at 
every level — from shadowing engineers in their daily workflows to 
identify high-impact opportunities, to co-creating enterprise-wide 
AI roadmaps and governance frameworks. With a strategic founda-
tion in place, the next step is execution. FEV supports customers  
in bridging the gap between software solution providers and  
engineering teams to integrate AI solutions into their workflow. 
Furthermore, we have developed a software-as-a-service platform, 
the GenAI Hub, to provide our engineers with the necessary AI tools 
to offer our customers even more efficient and higher-quality  
engineering services. Through daily use, our AI tools have achieved 
a high level of robustness and development maturity, enabling FEV 
to offer them to our customers as ready-made solutions so that 
they can directly implement the advantages of AI in their processes. 
The GenAI Hub is built with automotive-grade security protocols,  
ensuring that all development and intellectual property handling 
meet the stringent requirements of the industry.

To move from this strategy  
to concrete practice, the  
upcoming articles in this  
series will take you inside this 
ecosystem. We will present  
several of our implemented  
AI use cases in detail. The AI 
transformation is not a distant 
vision – it is an immediate  
operational imperative.

Contact FEV to explore  
your AI roadmap.

»AI transformation is an immediate 
operational imperative.«
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Engineering and automotive companies 
are facing more complex challenges and 

stricter rules than ever before. Standard AI 
tools often lack the flexibility and sophis-

tication required to achieve the efficiency 
increase needed to meet these demands 
in real projects. FEV takes a new approach 

by bringing agentic AI — smart systems 
made up of teams of specialized digital 

agents — into practical use for engineers. 
This article shows how the company 

is adapting to the latest AI trends and 
developments, and how it applies these 

advances to its own tools. The approach 
is presented in the context of two exam-

ples: first, how agentic AI assists engineers 
in the field of function development, and 

second, how agents facilitate the compar-
ison of regulations across diverse markets. 

Through these use cases, it is shown how 
agentic AI can simplify complex engi-

neering work, improve reliability, and help 
teams ensure compliance. The goal is to 

demonstrate the benefits of FEV’s agentic 
AI for modern engineering challenges.

#2
Turning agentic AI into a 

unique engineering  
advantage with FEV

1 
An agentic AI framework 
where AI agents collabo-
rate, share information via 
persistent memory, and 
provide services to one 
another.

Agentic AI at FEV
Recent breakthroughs in generative AI (GenAI)  
have resulted from increasingly large and powerful  
language models but also — more importantly —  
advances in model interactions and agent orches- 
tration. Modern systems go beyond the simple,  
one-off responses of single language models, by using 
multi-agent systems (MAS) that break down complex 
queries, deploy domain-specific tools, and aggregate  
results into robust answers. This synergy enables 
next-generation capabilities and greater reliability 
compared to prior single-model approaches.
The real leap emerges when one moves from isolated 
AI agents to agentic AI architectures that enable  
collaboration, memory, and orchestration. While  
traditional AI agents follow a Sense–Plan–Act loop — 
perceiving their environment, analyzing it, and  
taking action — agentic AI extends this model into a  
multi-agent, context-aware ecosystem.

This evolution is not just incremental; it represents  
a dynamic shift in how AI systems operate:
•	� From single-task execution to coordinated,  

multi-agent collaboration
•	� From stateless reasoning to persistent,  

shared memory
•	� From isolated decision-making to orchestrated,  

system-level planning

AI AGENT

Tools
LLM

Agent OS and  
orchestration

Reasoning
Task  

decomposition ...

Memory
Shared context

Search engine

AI agent

Memory

Reasoning

Tools

LLM

AI agent

Memory
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Building agentic systems comes with unique 
complexities. Reliable communication between 
agents, consistent state sharing, and standard-
ized interfaces are essential to keep processes 
smooth. There is also the risk that errors  
may accumulate or amplify as tasks move  
between agents. At the same time, permissions,  
compliance, and auditability must be carefully 
managed, particularly in distributed setups. FEV 
addresses these challenges through continuous 
monitoring, strong governance, and dedicated 
platform support to enable robust, dependable 
solutions. FEV’s proprietary GenAI Hub is used 
monthly by hundreds of employees, feeding 
real-world data into continuous improvement. 
Feedback mechanisms and analytics track value, 
guiding rapid updates that enhance quality and 
usability. The result is a continuously evolving 
toolset that delivers measurable gains in  
engineering productivity and quality.

Agentic AI for automotive  
function development
In the context of automotive function development,  
FEV applies MAS to accelerate the transformation 
of software requirements into fully tested Simulink 
functions. The system is built around the following 
key roles:

•	� Function Developer Agent: Translates formalized software  
requirements into initial Simulink models. It applies domain- 
specific rules, guidelines, and configurations to ensure  
consistency and correctness in the generated functions.

•	� Testing Agent: Derives requirement-based test specifications. 
These are passed to the Test Execution Agent, which runs the  
tests in MATLAB/Simulink, collects results, and identifies failures  
or unexpected behavior.

•	� Execution and correction loop: When tests fail or builds are  
unsuccessful, the system iteratively diagnoses issues, corrects  
the model or test logic, and re-runs the process until a valid,  
passing solution is reached.

To ensure reliability and reduce errors due to possible hallucinations 
or incorrect assumptions of LLMs, a human-in-the-loop mechanism 
is integrated at each stage. Developers can review, adjust, and  
approve outputs, maintaining engineering ownership and traceability.

This structured, agent-based workflow acts as a co-pilot for  
engineers, enhancing productivity while preserving decision-making 
authority. By combining generative AI with iterative refinement  
and human oversight, one can accelerate automotive function  
development while preserving safety, quality, and accountability.

Regulatory gap analysis service
Another key application of FEV's agentic framework is the  
automated extraction of requirements from all types of regulatory  
documents. The target is to build a comprehensive regulatory 
requirements database spanning all relevant automotive systems 
and markets. This structured repository serves as a foundation for a 
wide range of downstream workflows, enabling system development  
agents to systematically verify compliance with legal requirements. 
Dedicated agents can then perform gap analyses, identifying  
omissions and overlaps across different requirement sets.

FEV adapts these agentic AI principles directly  
to the engineering and automotive sectors. 
In practice, complex engineering queries are 
decomposed into a series of focused subtasks, 
each managed by specialized, dedicated agents. 
To tackle these subtasks, agents may utilize a 
variety of tools – such as document analysis 
engines, regulatory databases, and requirements 
checkers. Their outputs are integrated into a 
comprehensive and dependable answer.

One concrete example is FEV’s “Completeness 
Check” service — a service to validate an  
arbitrary set of requirements for completeness.  
In this setup, the Reference Set Assembly Agent 
first creates a benchmark requirements set 
based on industry best practices. The Compar-
ison Agent then evaluates the user’s set against 
this benchmark. The Regulatory Completeness 
Agent verifies compliance with relevant  
standards. Finally, the Quality & Clarity Check 
Agent identifies unclear or missing items and 
proposes actionable improvements.

This modular multi-agent system is encapsulated 
as the Completeness Check Agent, which  
operates as a tool within the Requirements 
Review Agent. The Requirements Review Agent, 
in turn, is a component of the overarching MBSE 
Agent, ensuring that completeness checks are 
integrated into a broader model based systems 
engineering workflow.

2 
FEV’s DevOps loop  
drives continuous 
service improvement 
by collecting, monitor-
ing, and automatically 
incorporating user 
feedback.

3 
FEV’s multi-agent framework acting as function developer agent.
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tomer’s infrastructure while balancing speed with customization.  
Finally, for organizations seeking rapid adoption at the most  
competitive cost, FEV GenAI Hub access licensing provides cloud- 
hosted AI capabilities operated in FEV’s secure environment.

Technology alone does not guarantee impact, which is why FEV’s 
services focus on consulting, tailoring, and integration. For AI use 
cases, the company works directly with engineering teams to adapt 
solutions to their unique workflows, tools, and data structures. For 
platform-level integration, the engineering experts ensure that AI 
modules seamlessly interoperate with existing digital ecosystems, 
preserving both technical stability and organizational efficiency.

This combination of flexible product delivery and targeted services 
allows FEV to translate AI innovation into operational value for its 
customers. Whether they choose deep, in-house deployments or 
cloud-based access to the platform, they benefit from the same 
engineering rigor, domain expertise, and long-term commitment  
to success. In essence, FEV delivers AI as the company engineers 
systems: fit for purpose, built to last, and designed to perform in  
the real world.

The process begins by analyzing and interpreting  
the layout of regulatory documents, extracting  
both textual and non-textual requirements, 
covering images, tables, and cross-references. 
Agents not only parse these various elements,  
but also assess how visual information informs  
or modifies individual requirements. Extracted  
requirements are then enriched with critical 
metadata, such as applicable markets, system 
context, and regulatory scope, before being  
securely stored in a centralized, searchable  
company-wide database.

For gap analysis, specialized agents systemat-
ically compare regulatory requirements from 
different markets. By leveraging semantic search 
and advanced matching algorithms, each  
requirement is paired with its closest equivalents 
in the compared set. The system then evaluates 
these pairings to identify gaps, overlaps, and 
discrepancies, providing targeted insights for 
compliance engineers and decision makers.

From AI vision to reality:  
Choosing the right path
In summary, the generative AI revolution is  
entering a new phase: one defined not just by 
bigger models but also by smart architecture. In 
engineering and automotive development, this 
shift is more than technical – it’s transformational. 

Traditional AI systems from some years ago, built 
around single-model responses, have reached 
their limits. The real leap forward comes from 
agentic AI: multi-agent systems that collaborate, 
remember, and reason in context. The impact is 
tangible: delivering lower costs, faster decisions, 
improved traceability, and greater confidence  
in outcomes. Now, the question is no longer 
whether to adopt agentic AI, but how.

Bringing advanced AI capabilities to customers is 
not just a matter of delivering code or deploying  
a model. At FEV, it is about aligning the right  
technology, deployment model, and integration 
approach with the specific needs, constraints, 
and ambitions of each client. The presented 
portfolio is designed to give engineering organi-
zations maximum flexibility while ensuring  
performance, security, and compliance remain 
uncompromised.

To address the diverse customer requirements, 
FEV offers three distinct product paths. White-
box AI product deployments give customers full 
transparency, with intellectual property shared 
and data processed entirely in their own envi-
ronment. This option offers the highest level of 
control and is ideally suited for highly regulated or 
security-critical domains. Black-box deployments, 
where the intellectual property is retained by FEV 
but delivered as a turnkey solution within the cus-

4 
FEV’s regulatory  
gap analysis service 
consisting of  
multiple individual 
agents extracting  
requirements  
from regulatory  
documents and 
identifying gaps  
in individual  
requirement sets.

5 
FEV’s products and 
services landscape  
in the field of  
AI/Generative AI.

Whitebox
AI Product

Deployment

IP stays at FEV,  
but is shared

Data handled  
in customer  
environment 

Highest price

Blackbox
AI Product

Deployment

IP is not shared

Data handled  
in customer  
environment

Medium price

GenAI Hub
access 

licensing

IP is not shard

Data handled  
in FEV  

environment

Lowest price

Consulting, tailoring and  
integration services 

for AI use cases

Consulting, tailoring and  
integration services 

for platforms

Products Services

Gap analysis 
agent

Matching  
agent

Requirement extraction agent

Legislation
documents

Requirements
set of country x

Requirement
context

Requirements
set

Gap  
analysis

report

FEV 
requirements

database

Evaluate 
gaps

Labeling

Reference 
extraction

Layout 
analysis

Paragraph 
extraction

Table/Image  
extraction

Reference 
extraction

Table/Image 
interpretation

Query  
references

Find 
matches

2

Requirements
database

Gap analysis 
report

Norms
regulations

Requirements
database

1

Evaluate 
matches

Requirements
extraction GAP analysis

|	 13

[ Agentic AI ]



#3
FEV’s TARA Copilot - Saving  
customers time while increasing 
quality and consistency of results

comings, but it is important to define the right degree  
of automation to deliver TARA results of the highest quality. An 
AI-based full automation of a highly critical and compliance- 
related process like TARA requires careful oversight and  
validation by human experts. Therefore, FEV’s concept of the 
“TARA Copilot” is defined as a support tool for the cybersecurity 
engineer. This person remains fully responsible for providing 
the inputs for the automation routine and reviewing the results 
of every step performed by the tool.

Modular chain architecture
An overview of the architecture of FEV TARA Copilot is shown 
in Figure 2. The system is designed using a modular chain 
architecture to automate TARA activities with the help of Large 
Language Models (LLMs). TARA Copilot automates the following 
activities: asset identification, damage scenario identification, 
threat scenario identification, attack path analysis, and attack 
feasibility rating. 

Each activity is encapsulated as an independent module 
within the chain, forming the backbone of the modular system 
architecture. Every module leverages large language models 
to generate specific TARA outputs based on defined inputs, 
such as tailored instructions (for example, prompts) and, when 
required, external databases. The output of each module 
seamlessly feeds into the subsequent one. Case in point, the 
results from the asset identification are directly utilized in  
the damage scenario identification module.

The Threat Analysis and Risk  
Assessment (TARA) is a mandatory 
work product of the cybersecurity 
lifecycle defined by the standard 
ISO/SAE 21434 for road vehicles. TARA 
consists of seven activities, namely
1.	 �Asset identification (including 

damage scenario identification) 
2.	 Impact rating
3.	 �Threat scenario identification
4.	 Attack path analysis
5.	 Attack feasibility rating
6.	 Risk determination 
7.	 Risk treatment decision

Typically, TARA activities are perfor- 
med manually by cybersecurity 
engineers – a time-consuming task 
that may result in incomplete or 
incorrect results. Furthermore, the 
task of performing TARA depends 
on the individual viewpoint of the 
respective cybersecurity engineer, 
which is to a certain degree sub-
jective. Therefore, TARAs which are 
performed by different engineers 
may vary significantly (Figure 1),  
potentially resulting in inconsistent  
results. Partial automation of the 
TARA process can solve these short-

1 
Industry state of practice 
and challenges for TARA.

Organizations often perform TARA activities manually

FEV’s goal: Leveraging LLMs to automate TARA activities, 
enhancing efficiency, effectiveness, and uniformity.

Time-consuming

Significant effort, resulting in  
slow development

Error-prone

Complexity increases the  
risk of human errors

Inconsistent results

Engineers may perform  
TARA in their own way
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Besides the item definition and the 
results of the previous modules, the 
so-called Threat Database is used 
as an additional input at this point. 
This Threat Database is designed to 
generate a more comprehensive 
set of threat scenarios than what  
a human could typically produce. 
To this end, FEV leveraged LLMs to 
create a database aligned with  
all threats defined in UNECE R155. 
Further sources for known threats 
can be used for additional inputs, 
such as customer databases  
(Figure 6).

FEV´s TARA process specification 
provides detailed definitions  
and descriptions of asset types  
(e.g., messages, software update), 
threat types (e.g., tampering, denial 
of services), and attack surfaces  
(e.g., wireless access interface  
by an external actor). Our experts 
systematically generated all  
possible combinations of asset 
types, threat types, and attack  
surfaces. LLMs were then used  
to validate which combinations  
correspond to legitimate threats 
from UNECE R155. For each valid 
combination, the LLM produced  
a detailed threat scenario  
description. 

As an alternative to the execution of all modules, the imple-
mentation of TARA Copilot allows the user to start the tool from 
an intermediate step if results from previous steps are already 
available. If assets have been identified already and are  
available as an additional input, TARA Copilot for instance can 
start directly with the identification of damage scenarios.

To demonstrate the workflow of TARA Copilot, we have  
selected a Body Control Module responsible for the door  
locking/unlocking function, which is critical for cybersecurity.

The first module is called Module 0 and aims to identify  
cybersecurity-relevant assets. It starts with two inputs: the  
definition of the item under consideration (the BCM in our  
example) and instructions derived from FEV´s TARA process 
specification. These instructions are formulated in natural 
language. For example: “Derive a comprehensive list of assets 
based on the item functions, technical information, and the 
asset types provided.” Both the instructions and item definition 
are then passed to TARA Copilot Flowise interface. This  
setup prompts the LLM to analyze the context (i.e., the inputs  
provided) and identify cybersecurity-relevant assets. Two  
of these assets are shown in Figure 4.

In Module 1, TARA Copilot shifts to describing damage  
scenarios and assigning impact ratings (safety, operational, 
financial, privacy). Inputs include the item definition, assets 
from Module 0, and instructions such as: “For damage scenar-
ios related to item functions (e.g., communication interfaces), 
include the driving scenario as part of the damage scenario.” 

TARA Copilot computes the impact rating for each damage 
scenario, including a rationale explaining the choice of the  
impact rating. Similar to Module 0, the inputs are passed to 
TARA Copilot Flowise interface. Figure 5 illustrates one example 
of a damage scenario described by TARA Copilot. The impact  
ratings are omitted. Module 2 identifies threat scenarios.  

An example of a valid 
combination and its threat 
scenario description  
would be:
•	 �R155 threat: Malicious 

diagnostic messages
•	 �Asset type: Diagnostic 

routing
•	� Threat type: Tampering
•	� Attack surface: Physical 

access to the OBD  
port by an external actor

•	 �Threat scenario  
description: An attacker 
uses the OBD port to  
inject malicious  
diagnostic messages, 
potentially leading to 
unauthorized access 
and manipulation  
of vehicle data.

6 
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4 
Exemplary assets identified by TARA Copilot for a BCM.

Asset ID Asset  
description

Asset  
type

Asset  
property

Involved  
ECU(s) Rationale

BCM-ASSET-010 Door_Unlock_
Request -  
CAN 2: Door 
Unlock

Messages Integrity BCM,  
Gateway

Manipulation of unlock  
requests can lead to  
unauthorized access.
Integrity ensures the message  
is genuine and unaltered.

BCM-ASSET-011 Door_Unlock_
Request -  
CAN 2: Door 
unlock

Messages Available BCM,  
Gateway

Unlock requests must be avail-
able to ensure vehicle access.
Availability ensures the  
message can be processed 
when needed.

Asset ID Asset  
description

Asset  
property Damage scenario ID Damage scenario description

BCM-ASSET-010 Door_Unlock_
Request -  
CAN 2: Door 
Unlock

Integrity BCM-ASSET-010-
DS-001

Driving scenario: The vehicle  
is parked in a public area.
Damage scenario: An attacker  
manipulates the Door_ 
Unlock_Request message 
causing the doors to unlock 
unexpectedly.

5 
An exemplary damage scenario identified by TARA Copilot for a BCM.

»FEV’s TARA Copilot leads to time savings  
of approximately 50% and improvement of the  
quality and consistency of TARA results.«
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2 
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Conclusion
FEV’s TARA Copilot has consistently demonstrated its  
effectiveness in a wide range of development projects,  
delivering measurable benefits in efficiency and quality alike. 
Its integration into the Threat Analysis and Risk Assessment 
(TARA) process has led to a remarkable reduction in overall 
effort – cutting the time required for finalization by approxi-
mately 50% and streamlining complex assessments without 
compromising rigor. Beyond time savings, TARA Copilot signifi-
cantly improves the quality and consistency of TARA results. 
Automated support ensures standardized output and reduces 
human error, while intelligent guidance helps teams maintain 
alignment with cybersecurity best practices. Thorough reviews 
by the responsible TARA owner, along with precise inputs for the  
tool – namely the item definition and process instructions –  
remain essential to maintain high-quality outcomes.

Following its successful proof of concept, FEV is actively  
expanding the deployment of the TARA Copilot across its  
global cybersecurity organization. The tool is now also  
available to external customers, offering organizations a  
powerful solution to enhance cybersecurity risk assessments 
with greater speed, consistency, and confidence.

Similar to other modules, the inputs are configured in TARA  
Copilot Flowise interface. Figure 7 illustrates one example of a  
threat scenario identified by TARA Copilot. Note that the ID of  
the threat scenario is omitted.

Module 3 enumerates attack paths taking into account  
instructions related to the following questions:
•	 How does the attacker reach the attack surface?
•	� How does the attacker proceed to reach the asset  

from the attack surface?
•	� How does the attacker proceed to violate the cybersecurity  

property of the asset?

Figure 8 illustrates one example of an attack path  
described by TARA Copilot.

In Module 4, attack feasibility ratings are computed based on  
instructions aligned with the attack potential-based approach  
recommended by ISO/SAE 21434. Figure 9 illustrates the attack 
feasibility rating computed for the attack path in Figure 8. The final 
attack feasibility rating (e.g., Low, High) is calculated automatically 
afterwards based on defined core factors (e.g., elapsed time,  
expertise). A feasibility rating concludes the automated steps, as 
both risk determination and risk treatment decision activities are 

outside the scope of TARA 
Copilot. The risk values are 
computed deterministically by 
using a risk matrix, which may 
be automated using formulas. 
The risk treatment decision  
is project-specific, as such  
decisions are often made 
based on a company-specific 
risk treatment decision policy.

After completing all calcula-
tions, TARA Copilot exports the 
results into FEV’s TARA report, 
enabling the designated TARA 
owner to perform a systematic  
review. Review findings are 
transferred to updated inputs, 
and consecutive runs of  
TARA Copilot are conducted 
afterwards until the results are 
accepted by the TARA owner.

7 
An exemplary threat scenario identified by TARA Copilot for a BCM.

8 
An exemplary attack path identified by TARA Copilot for a BCM.

Asset ID Asset  
description Damage scenario description Threat scenario description Threat type Attack surface R155 reference

BCM-ASSET-010 Door_Unlock_
Request -  
CAN 2: Door 
Unlock

Driving scenario: The vehicle 
is parked in a public area. 
Damage scenario: An attacker 
manipulates the Door_Un-
lock_Request message 
causing the doors to unlock 
unexpectedly.

An attacker tampers with 
the Door_Unlock_Request 
message on the CAN bus while 
the vehicle is parked, leading 
to unauthorized access to the 
vehicle.

Tampering Physical access to 
a CAN interface by 
an external actor

4.3.2/5.2

Attack path ID Elapsed time Expertise Knowledge of system Window of 
opportunity Equipment Rationale

BCM-ASSET-
010-DS-001-TS-
001-PATH-001

<=1 week Proficient Restricted information Easy Standard When the vehicle is parked, the attacker benefits from 
unlimited time to analyze and understand the propri-
etary message using internal documentation. The lower 
time pressure allows the use of standard equipment 
and proficiency-level expertise, with an easier window 
of opportunity compared to an attack during vehicle 
motion.

Threat  
scenario ID

Threat scenario  
description Attack path ID Attack path description

BCM-ASSET-
010-DS-001-
TS-001

An attacker tampers 
with the Door_Un-
lock_Request message 
on the CAN bus while 
the vehicle is parked, 
leading to unauthorized 
access to the vehicle.

BCM-ASSET-010-DS-
001-TS-001-PATH-001

1. Park the vehicle to obtain extended physical access to the CAN bus interface. 
2. Connect to the CAN bus using standard CAN injector. 
3. �Use internal (restricted) documentation to analyze the proprietary  

Door_UnLock_Request message format. 
4. Craft a modified message that instructs the BCM to unlock the door. 
5. Inject the crafted message into the CAN bus to simulate the tampering scenario.

9 
An exemplary attack feasibility rating computed by TARA Copilot for a BCM.
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The surge in Artificial Intelligence (AI) development is profound-
ly impacting computer-aided engineering (CAE). Both traditional 
CAE methodologies and emerging approaches are experiencing 
a significant boost. Conventional CAE processes are being en-
hanced through better availability of high-performance comput-
ing resources or coupling to AI-driven optimization. Beyond these 
enhancements, entirely new methods are emerging, often termed 

“AI-driven CAE”, alongside approaches such as “Explainable AI”. 
These innovative approaches leverage AI to tackle complex 

engineering challenges that were previously intractable. 
Tools such as generative design and simulation acceler-

ation may soon even allow real-time prediction.

It is crucial to clarify what is meant by “AI” in this 
context. While large language models (LLMs) 

have captured widespread attention, the appli-
cation of AI in CAE extends far beyond conver-
sational interfaces. Here, “AI” encompasses a 
broader spectrum of technologies, including 
machine learning and deep learning, see 
Figure 1. 

The implications for product development 
cycles, especially time-to-market, are 
enormous. In an increasingly globalized and 
competitive market, the ability to rapidly 
design, test, and refine products is para-
mount. We are witnessing a clear divergence 

in development speeds, with certain regions, 
and their respective OEMs, demonstrating 

remarkable agility. Their adoption of mod-
ern CAE methodologies allows for significantly 

compressed development timelines compared to 
some traditional players. This provides a strategic 

advantage and underscores the urgent need for com-
panies to integrate AI into their engineering workflows to 

remain competitive.

FEV is at the forefront of this revolution. With its deep expertise 
and cutting-edge tools, the company offers a comprehensive suite 
of CAE services that integrate the power of AI to address the most 
demanding engineering challenges across various industries.

This article provides a cross-section of three completely different 
AI-driven approaches: physics-informed neural networks (PINNs), 
Bayesian optimization (BO), and moving morphable component 
(MMC) topology optimization.

#4 Artificial intelligence in com
puter-aided engineering

1 
Definition of AI in the 
context of CAE.

Artificial
Intelligence

Machine 
learning

Deep 
learning

Gen 
AI LLM
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Here PINNs can significantly 
reduce the computation time 
and therefore combat the 
bottleneck of CFD simulation 
in the design process. With a 
small set of CFD-generated 
training data, the PINN can be 
trained to solve the governing 
equations for the individual 
model without the need for 
meshing or discretization, and 
in a fraction of the time re-
quired by a full CFD simulation 
of all states. This is highlight-
ed for a parameter variation 
regarding the channel width in 
a flow-field design in Figure 3, 
wherein a system without liquid 
water was modeled. Here, the 
computation time could be 
reduced by a factor of 3. For 
the consideration of liquid 
water, a much higher reduction 
of required resources of up to 
factor 10 is predicted, making 
this approach even more ben-
eficial (Figure 4).

The result of a PINN-based  
simulation for the pressure  
of a bipolar plate is shown in 
Figure 5. The accuracy plot 
reveals the high agreement of 
the PINN simulation with only  
two training-points and CFD  
simulation. 

Physics-informed neural networks
Physics-informed neural networks (PINNs) are a pioneering appli-
cation of AI in simulations. As with conventional neural networks, 
a PINN is trained using data. The crux of PINNs is that during this 
training, the outputs are compared with the results of physical 
governing equations, such as conservation of mass and energy, or 
momentum in the form of the Navier-Stokes equations. This devia-
tion is then incorporated into the loss function of the neural network, 
allowing for physics-based training of the network (Figure 2). The 
integration of the governing equations into the neural network not 
only enables accurate predictions of the system behavior, but also 
significantly reduces the required amount of training data.

The biggest effort when working with PINNs or any neural network 
goes into the training process. Once such a network is trained, 
prediction of the trained model can be conducted in a matter of 
seconds.

Use Case: Design of bipolar plates for fuel cells
The design of the flow field of bipolar plates is a typical application 
for simulation and a crucial part of any fuel cell development. The 
targeted design of the flow field ensures a uniform supply of re-
actants to the cell, guarantees proper performance, and prevents 
premature deterioration. The design process involves an iterative 
loop of improvements to the CAD design and subsequent assess-
ment through CFD simulation. However, the CFD simulation requires 
high resources, both in terms of computing time and costs. This is 
due to the various phenomena characterizing the flow. Diffusion 
through the gas diffusion layer (GDL) to the catalytic layer and the 
electrochemical reaction must be modeled, the removal of the 
resulting heat and electric current must be ensured by sufficiently 
large contact surfaces between the bipolar plate and the GDL, and 
the formation and removal of liquid water must be considered.

2 
Schematic of the PINN architecture 
consisting of a conventional NN, 
the governing equations, and their 
integration into the training algorithm 
through the loss function.

4 
The potential benefit of PINN-based 
simulation for fuel cell models becomes 
especially lucrative when considering  
the formation of liquid water.

Simulation time/h
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0
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CFD
no water

3.7

CFD
with water

231

Largest potential 
assumed for  
complex multi-
phase physics

3 
The simulation time of conventional CFD takes significantly 
longer than a PINN-based simulation. Simulation with  
AI requires high-performance graphics hardware.

Simulation time/h

4

3

2

1

0

PINN training

CFD training- 
data

CFD
Full effort

3.71

PINN
Full effort

1.15

Used hardware 
PINN training:
GPU: Nvidia  
GeForce RTX  
5090 with 21.760 
CUDA-cores

Hardware 
requirements 
shift strongly 

towards a 
powerful 
graphics 

card

Used hardware  
CFD simulations:
CPU: Intel  
i9-14900K with  
24 cores@6GHz
RAM: 96 GB RAM

5 
PINN-based simulation results for pressure along a channel, along 
with their accuracy compared to conventional CFD simulation.

1.28

1.08

0.88

0.68

0.48

0.28

0.08

1992

1991

1990

1989

1980
0 10 12 30 40 50

Cell width/mm Pressure/mbar 

Channel length/mm 

1992

1991

1990

1989

1989 1990 1991 1992

Predicted pressure/mbar

CFD pressure p/mbar

 CFD x Predictions

Conventional architecture

Input Output

Expansion to PINN

Comparison with  
governing equations

ux σ

σ

σ σ

σ

σ

σ

σ

σ

vy

wz

pt

 Neural 
network

Training algorithm
Loss = mse(data) + mse(governing equations)

|	 23

[ Computer-aided engineering ]



7 
Nested  
co-optimization 
approach of  
active learning 
framework.

Parameter Value Unit

Gross vehicle weight 7,500 kg

Towing weight 3,500 Kg

Dynamic wheel radius 0.361 m

Coast down factor F0 1,050 N

Coast down factor F1 0 N/(km/h)

Coast down factor F2 0.1349 N/(km/h)²

HV-battery type NMC -

Cell capacity 92 Ah

Number of cell in series 250 -

Number of cell in parallel 4 -

8 
Vehicle parameters of 7.5 t truck study.

VECTO Urban Delivery Cycle

Reference Optimized Improvement

Optimization 
variables

kA = 1 
kR = 1 
NEM = 1 
NG = 1 
rG,1 = 10

kA = 0.53
kR = 1.18
NEM = 1
NG = 3
rG,1 = 15.7
rG,2 = 11
rG,3 = 9.2

-

Energy  
consumption

50.8 kWh 48.9 kWh 3.74%

Startability 26% 30% 15.38%

9 
Optimal design and KPI improvements of  
7.5 t truck for common use-case.

Use case and results A:  
7.5 t medium duty truck
Applied to a 7.5 t electric truck 
with a two-speed transmission,  
the framework delivered a dual- 
motor layout that cut energy 
use by 3.74% and boosted hill 
start torque by 15.38% over 
the baseline (Figure 8). Com-
ponent sizing and gear ratio 
adjustments are summarized 
in Figure 9.

Use case and results B:  
AWD SUV benchmark
For an AWD SUV reconfig-
ured to RWD, co-optimization 
increased motor diameter 
by 25% and reduced length 
by 16%, aligning the efficien-
cy sweet spot with real-world 
driving cycles (Figure 10).  
Overall system losses dropped 
by 0.35 kWh/100 km.

Summary
By uniting data‑driven hard-
ware design with predictive 
control, this two‑layer frame-
work accelerates development, 
cuts energy consumption, and 
ensures thermal safety advan-
tages in the development of 
market‑leading electric vehi-
cles (Figure 11).

Powertrain co-optimization: Enhancing efficiency 
through active learning and predictive control
Meeting stringent powertrain targets for torque, efficiency, and ther-
mal reliability requirements for an integrated design approach, FEV’s 
two‑layer co‑optimization framework combines rapid, data‑driven 
hardware sizing with predictive thermal and torque control; deliver-
ing best‑in‑class performance in under 100 design iterations.

Designers must balance conflicting objectives: larger electric 
motors improve efficiency but add weight and cost; multi‑speed 
gearboxes expand operating range at the expense of complexity; 
aggressive cooling protects components but consumes auxiliary 
power. Hence, treating hardware and controls separately leads to 
repeated development cycles and delayed product launches.

Rather than trial‑and‑error, FEV’s experts apply a Bayesian‑based 
optimizer that builds a statistical model of how motor dimensions 
and gear ratios impact overall energy use and torque capability. 
By intelligently sampling the most promising designs, the engineers 
determine optimal configurations in ten times fewer simulations 
than conventional methods (Figure 6).

Each candidate design is validated through a real‑time predictive 
controller that allocates torque between dual motors and adjusts 
cooling devices to keep temperatures within safe bounds. This 
ensures every proposed architecture is thermally viable, reducing 
late‑stage redesigns and warranty risks.

Our process alternates between proposing hardware variants and 
simulating their performance under a representative mission profile. 
Energy consumption and temperature data feed back into the op-
timizer, which refines the next set of design parameters. This nested 
loop concludes when further improvements fall below a predefined 
threshold – typically in fewer than 100 cycles (Figure 7).

10 
Vehicle paramaters of AWD 
SUV benchmark study.

Parameter Specification

Dimensions (L/W/H) (4,635/1,890/1,605) mm

Powertrain layout AWD

Maximum torque MPeak,System 605 Nm

Maximum power PPeak,System 225 kW

Battery capacity EHV,Bat 72.6 kWh

Curb weight mVehicle 2,095 kg

Front surface ASurf 2.5 m²

Rolling friction Coeff. fr 0.0146 –

Drag Coeff. AGS open cd,open 0.302 –

Drag Coeff. AGS closed cd,close 0.288 –

Dynamic wheel radius rdyn 0.35 m

Gear ratio rear drive iTot,Rear,Ref 10.65 –

Application design boundaries

Use case

Pump speed
Fan speed

Bypass valve position
Active grille shutter

Actual temperature
Actual power

Actual power losses

Stochastic
optimization

Design objectives

Efficiency
Performance
Durability

PMSM length
PMSM diameter
Gear ratio

Energy  
consumption
Performance
Thermal load 

Numerical
optimization

Control objectives

Additional battery
power (PMSM/ 
Inverter/ICCU losses, 
Auxiliary power)

11 
Backend  
functionalities of 
FEV’s signature 
solution, the “AI- 
integrated System 
Development  
Methodology,” 
along with specific 
results from  
the AWD SUV  
benchmark study.

Research  
problem Research  

results

System and  
EM design

System  
optimization

Gap in comprehensive EM co-optimization process  
of thermal control and electromagnetic design

Section 2 
System architecture definition

System  
require-

ment

Design and 
control  

parameters  
em size

Gear ratio
Pump, fan,...

System 
config.

Section 4 
Machine learning design  
parameter feedback loop

System 
Objectives
Efficiency

Perfor-
mance

Durability

Objective 
Training

Gaussian 
Process 

Regression

Uncertainty 
Improve-

ment
Expected 
Improve-

ment

Section 3.1-3.3 
Hardware component design

Design
length

diameter

Electro-
magnetic

torque,
losses

Thermal
heat  

transfer

EM “right size”

EM energy  
conversion 

improvement 
(+32.7%)

System energy 
consumption 

reduction  
(-0.35 kWh/ 

100 km)

Section 3.4-3.7 
Software component design and 
integration

Economic 
NMPC

framework 
definition

Control 
objectives
heat loss 
auxiliary 
power

System  
MiL  

evaluation

6 
Objective and parameter tuning  
throughout the trainings process. Min estimatedMin observed
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|	 25

[ Computer-aided engineering ]



BY
Dr. Bastian Morcinkowski 
morcinkowski@fev.com
Jan Ophey 
ophey@fev.com 
Sven Bröhl 
ext_broehl@fev.com
Christoph Alexander Wellmann 
ext_wellmann@fev.com

Conclusion
The integration of Artificial Intelligence is fundamentally  
transforming computer-aided engineering, moving 
beyond enhancements to conventional methods and 
enabling entirely new engineering approaches. The 
three examples presented in this article showcase this 
broad impact across different engineering disciplines.

PINNs, for instance, demonstrate how incorporating 
physical laws into neural network training can dramat-
ically reduce the need for extensive data, accelerat-
ing complex simulations like those for fuel cell bipolar 
plates. Similarly, BO provides a powerful framework  
for co-design, intelligently navigating vast design 
spaces to find optimal solutions with significantly  
fewer iterations. Finally, the MMC method illustrates a 
targeted approach to structural optimization, allowing  
designers to efficiently refine subcomponents for  
specific performance goals, such as maximizing  
energy absorption.

These diverse applications underscore a critical shift: 
AI is not a one-size-fits-all solution but a versatile tool-
kit. By strategically applying AI technologies, engineers 
can overcome traditional bottlenecks, from simulation 
time to design complexity, leading to faster, more effi-
cient, and more innovative product development cy-
cles. Integrating these intelligent workflows is no longer 
a competitive advantage but a necessity for staying 
ahead in today's fast-paced, global market.

12 
Moving Morphable Components method.

Moving Morphable Components method
Complete vehicle simulations across all disciplines can become 
very complex due to the size of the models and the large variety of 
load cases. To speed up the development process, it can be helpful 
to select subcomponents and optimize them using a simplified 
method in an efficient environment. The Moving Morphable Compo-
nents (MMC) method is a suitable approach for this purpose.

As an optimization approach, the MMC method allows for the in-
corporation of the designer's intent into the optimization process. 
The process begins with several components being initially placed 
within the design domain. The optimal geometry is then represent-
ed through the scaling, rotating, translating, and overlapping of 
these components. As the optimization progresses, the components 
gradually adapt to the optimal geometry. Figure 9 illustrates this 
process, showing the evolution from a design domain with pre-po-
sitioned components to the final optimal geometry.

Use case
The MMC method can be used to optimize the section of a structur-
al part, such as an extrusion profile, for a specific task. An example 
task is achieving maximum energy absorption (e.g. in a crash load 
case) with minimum material effort or weight (Figure 9). The MMC 

method is a combination of 
varying the geometrical pa-
rameters of initial components, 
such as length, width, and 
angle, and using a 2D-based 
finite elements method for 
evaluation, such as a stroke-
force evaluation – feeds the 
generated results back into 
machine learning.

After this optimization at the 
 most efficient level, the cross- 
section must be implemented 
and verified in the full vehicle 
model as well. Furthermore,  
the generated geometries  
will then also be validated in 
regards to industrialization  
and manufacturability.

»FEV is at the forefront of integrating  
AI into engineering - addressing  
the most demanding engineering  
challenges across various industries.«

Design  
domain

Pre-positioned  
components

Gradual adaption of the component to the optimal geometry

Application example:  
Design for improved crash absorption

Picture by Nature Architects
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#5
Data-driven 

anomaly  
detectors – 

Smarter  
diagnostics,  

less effort

therefore explore adaptive, data-driven methods that reduce 
calibration effort, are highly adaptable and generalize beyond 
pre-specified faults. Specifically, we apply variational autoencoders 
(VAEs) for unsupervised anomaly detection in internal combustion 
engines (ICEs). Trained solely on healthy data, the VAE learns the 
joint behavior of multivariate time series and the operating  
context, capturing correlations that are difficult to model by hand, 
and flagging statistically meaningful deviations via reconstruction 
error. In a demonstrator with an artificially injected sensor drift, the 
proposed methodology successfully detected the induced anom-
alies, indicating a practical complement to OBD that scales with 
system complexity, eases monitor maintenance, and enhances 
reliability as well as emissions compliance.

On-board diagnostics (OBD) form the basis for  
fault monitoring in internal-combustion engines 
(ICE). About 50% of all software functions in modern  
engine ECUs are OBD-related, underscoring the 
complexity of current monitoring. OBD logic is hand- 
crafted from expert rules and (semi-)physical  
models, so it’s costly to develop and hard to adapt 
to new systems, especially as architectures or  
powertrain topologies evolve. Furthermore, OBD  
calibration is typically based on a predefined cata-
logue of failure modes, which reduces sensitivity  
to rare or previously unseen (for example, out-of- 
distribution) faults. Moreover, human experts are 
limited in their ability to process high-dimensional, 
nonlinear correlations across sensors, actuators, 
and operating conditions (load, temperature, aging, 
operation mode) simultaneously. This results in  
multiple tailored monitors and thresholds that fail to  
reflect component interactions – even as most recent  
regulations such as on-board monitoring (OBM)  
call for comprehensive, system-level diagnostics.

Meanwhile, the ever-increasing number of  
connected vehicles produces rich data that can 
support detecting emerging issues earlier. We 

1 
Function of VAE. The VAE is purely trained based on healthy data (upper part). The 
weights are learned such that the reconstruction error and the KL divergence are  
minimized. During testing (lower part), the VAE fails to reconstruct if faulty samples are 
fed in, which can be detected based on high reconstruction errors (anomaly score).

Training
Input: Healthy data

Input: Healthy &  
faulty data

Reconstruction

Reconstruction

Testing

Encoder Latent space Decoder
Engine speed
Engine torque
Air mass flow

Inlet temperature
Inlet pressure

...

Engine speed
Engine torque
Air mass flow
Inlet temperature
Inlet pressure
...

Use reconstruction error | − | as 
score for anomaly detection

Reduce reconstruction error | − |  
and KL-divergence
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Use case: Sensor drift in  
a 2.0-liter diesel engine
The data used for this study was collected using 
a passenger vehicle equipped with a 2.0-liter  
turbocharged diesel engine. The vehicle was  
operated in full-series specification to ensure  
relevance for real-world scenarios.

To capture the dynamics of the engine under 
both nominal and faulty conditions, a targeted 
subset of signals was logged at different sample  
rates. These included air path temperatures, 
pressures, actuators, and signals related to  
the current operating condition of the engine.  
The full list is provided in this table:

Variational autoencoders
VAEs are a class of generative models that learn 
to represent high-dimensional input data in a 
compressed and structured way. At a high level, a 
VAE consists of two main components: an en-
coder and a decoder. The encoder maps input 
data into a lower-dimensional latent space, while 
the decoder attempts to reconstruct the original 
data from this compressed representation. Unlike 
traditional autoencoders, VAEs learn not a fixed 
but a probabilistic mapping from input to latent 
space: each input is mapped to a distribution 
over the latent space rather than a single point.

As can be seen from Figure 1, the VAE does not 
require labeled data during training which is 
an advantage compared to supervised learn-
ing models. The VAE is purely trained based on 
healthy data. In this way, it learns to reconstruct 
the healthy input data via the compact and con-
tinuous lower dimensional latent space. Training 
a VAE involves balancing two objectives
•	� Reconstruction loss: Encourages accurate  

reconstruction of the input  to the output ,  
typically quantified by a function proportional 
to |  − |

•	� Kullback-Leibler (KL)-loss: Encourages the 
learned latent distribution q  to follow a  
predefined prior distribution — typically a  
standard normal distribution (0,1k)

After training, the model can detect abnormal 
data indicated by high reconstruction errors  
between the input  and the output ,. In this 
study, this reconstruction error is calculated  
as the mean squared error and serves  
as the Anomaly Score where  denotes the  
dimensionality of :  =  । - ।  

The training data was collected by driving “Real Driving  
Emissions” (RDE) cycles chosen for their representative char-
acter. The diverse operating conditions captured by these 
cycles allow the model to learn from a wide range of normal 
behavior. The RDE route driven was approximately 100 km long 
and took place near Aachen, Germany. This route was driven 
four times, providing approximately 8 hours of healthy base-
line data. Furthermore, another four drive cycles were includ-
ed with an additional five hours of healthy data. These follow 
the same principles as RDE but were conducted outside the 
strict RDE boundary conditions and serve to increase the size 
of the dataset used for model training. For testing the VAE,  
a completely different route was used, not included in the 
training data. Similar to RDE cycles, the route included a 
representative mix of urban, rural, and motorway driving. This 
variety ensures that the model is exposed to a wide range of 
engine loads, vehicle speeds, and transient behaviors, which 
is essential for validating the robustness of the anomaly  
detection across different operating conditions. The test  
route spanned approximately 20 km and was driven under 
both healthy and faulty vehicle conditions.

To evaluate the performance of the proposed anomaly  
detection framework under fault conditions, engine param-
eters were manipulated in the ECU. Specifically, the transfer 
curve of the Mass Air Flow (MAF) sensor was shifted to  
simulate a sensor drift. Two different drifts were implemented,  
by shifting the curve by 10% and 20%, respectively. The transfer 
curve maps the sensor’s raw output – typically a frequency 
from a hot-film element held at a fixed over-temperature, 
where airflow cooling alters the required drive power – into an 
air-mass-flow value. To implement the two aforementioned 
fault severities, the output of the transfer curve was scaled by 
a factor of 0.9 and 0.8 across the entire operating range.

Results
The following presents the results 
of the proposed method. First, the 
reconstruction capabilities of the 
VAE will be evaluated based on time 
series data, then the distribution of 
anomaly scores will be analyzed  
given different conditions of the  
system.

Figure 2 presents reconstructions for 
selected channels over a representa-
tive test-cycle segment. To enable a 
direct comparison of the signals and 
the corresponding anomaly score 
within a single plot, we concatenated 
the last 150 s of a healthy drive cycle 
with the first 150 s of a faulty one,  
noting that the engine was turned  
off in between; the transition point t   
is marked by a lightning symbol. For 
t < t  the system is assumed healthy, 
for t > t  it is assumed faulty with a 
20% MAF drift. For the healthy frame, 
the VAE accurately reconstructs both 
high dynamic signals (e.g., air-mass 
flow) and slow-varying signals (e.g., 
intake temperature), resulting in a 
low anomaly score (see equation (1)) 
until t ≈ t . Around the fault injection, 
only the air-mass flow reconstruction 
shows a clear large-scale deviation. 
Nevertheless, the anomaly score 
increases, indicating that the VAE 
struggles to reconstruct the abnor-
mal signals.

Parameter Variable Sample  
frequency Unit

Engine torque 100 Hz Nm

Engine speed 100 Hz rpm

Exhaust gas pressure 
upstream turbine exh 100 Hz hPa

Intake pressure in 100 Hz hPa

Air-mass flow air 100 Hz kg/h

LP-EGR valve position EGR,LP 100 Hz %

HP-EGR valve position EGR,HP 100 Hz %

Throttle valve position TV 100 Hz %

Turbine vane position VGT 100 Hz %

Exhaust gas lambda 100 Hz –

Temperature intake in 10 Hz °C

Exhaust gas  
temperature turbine  
upstream

exh,T 10 Hz °C

Exhaust gas  
temperature SCR 
upstream

exh,SCR 10 Hz °C
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Conclusion
The article investigates VAEs as 

an unsupervised learning method to 
improve OBD function development for ICEs. 

The model learns normal multivariate behaviour 
from healthy data and indicates potential faults by 

meaningful deviations via reconstruction error as an  
anomaly score. The conducted experiments use a produc-
tion 2.0-liter diesel vehicle. The training data consist of  
four ~100 km Real Driving Emissions (RDE) routes (~8 h)  
plus ~5 h of additional healthy driving, the validation uses a  
distinct ~20 km route recorded in healthy and faulty states. 
The faults were induced by shifting the ECU’s Mass Air Flow 
(MAF) transfer curve by -10% and -20%, respectively. The 
results show an accurate reconstruction and low anomaly 
scores in healthy operation, with clear increase of anomaly 
scores under fault conditions. Channel-wise analysis reveals 
sensitivity aligned with fault mechanics (for example, highest  
shifts for air-mass flow). The study concludes that VAEs can 

be used for anomaly detection using 
real sensor data of a production vehicle.  
Since only unlabelled healthy data is 
required for training, the calibration 
effort for OBD can potentially be reduced 
by complementing it with this method.

To turn anomaly detection into action-
able diagnostics, the proposed method 
could be used for segmenting trips into 
windows with persistently high anomaly 
scores and logging the corresponding 
operating context (for example, load, 
speed, temperature). These “anomaly 
snippets” can guide workshop work-
flows by pinpointing when and where 
condition-dependent faults can be  
reproduced through re-testing at simi-
lar operating points. Building on this,  
the extraction of reconstruction profiles 
as signatures can be used as input for 
supervised models to map these profiles  
to likely fault types and locations. To 
reduce labelling effort, semi-supervised 
learning strategies can be used.

To have a more general view of the reconstruction errors 
caused by the simulated MAF faults, Figure 3 shows the  
distributions of channel-wise anomaly scores among the 
healthy and faulty test drive cycles for the same five channels. 
In general, healthy samples yield scores near zero, consistent 
with accurate reconstructions. The reconstruction difficulty 
varies by channel: The engine speed, for example, exhibits 
higher scores than the air-mass flow given healthy system 
state. The same trend holds under faulty conditions. Relative  
to the healthy baseline, the anomaly score distribution of the 
engine torque changes only slightly, whereas the air-mass 
flow distribution shifts significantly toward higher anomaly 
scores. This can be expected, since this signal is directly  
affected by the modified MAF transfer curve in the ECU  
calibration. Moreover, the shift increases with fault severity 
(from -10% to -20%), which is most evident in the air-mass  
flow signal. This suggests that the VAE struggles more with  
reconstructing the major MAF fault than the less severe one. 
This indicates that, given the MAF fault, the anomaly score 
magnitude can be used to infer fault severity

2 
Reconstruction plot that 
shows the input  and 
the output  of the VAE. 
At tT, the transfer curve  
of the MAF curve is 
trimmed by 20% to 
simulate a sensor drift. 
Note, that the engine 
was shut-down between 
healthy and faulty.
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3 
Distribution of anomaly 
scores for pre-selected 
channels from healthy 
and faulty systems with 
two different MAF fault 
severities.
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»REEVs and long-range PHEVs provide a practical 
solution for users who are not yet ready to  
switch to BEVs, while still delivering significant 
emissions reductions.«

As the global automotive industry moves rapidly toward  
full electrification, range-extended electric vehicles (REEVs) 
and plug-in hybrid electric vehicles (PHEVs) with extended 
electric range are gaining traction. These vehicles represent  
a compelling transitional solution for markets where 
charging infrastructure, energy pricing, and user behavior 
are not yet fully aligned with battery electric vehicles (BEVs).

In China, REEVs are thriving, as vehicles with electric-only 
ranges above 150 km qualify as new energy vehicles (NEVs) 
and benefit from generous government subsidies. In  
Europe, interest is also rising, though regulatory hurdles 
still prevent REEVs from being recognized as zero-emission 
vehicles. Regardless of region, the combination of everyday 
practicality, range flexibility, and falling battery costs makes 
this vehicle class a serious contender in the modern  
mobility transition.

#6 REEVs and long-range PHEVs –

Bridging the gap to full electrification

Battery types for 
xEV applications:  
Chemistry  
meets use case
Battery technology  
selection depends heavily 
on the vehicle type and its 
intended use. Different  
xEV architectures require 
different balances of 
energy density, charging 
speed, cycle life, and cost.
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Key performance indicators  
for REEVs include:
•	� Electric range (> 150 – 200 km): 

Benchmark for incentives and  
daily usability

•	� Specific energy (Wh/kg): Crucial  
for weight and packaging efficiency

•	� Cycle life: Frequent charging  
with minimal degradation must  
be supported

•	� Thermal behavior: Safety across the 
entire temperature and load window

•	� Cost per kWh: Impacts vehicle  
pricing and market competitiveness

•	� Charging speed: 400/800 V DC fast 
charging is increasingly expected

•	� Power and system voltage:  
Aligned with BEVs of same platform, 
if applicable especially for charge 
sustaining operation
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Depending on the vehicle’s powertrain architecture, the 
typical values of the battery performance KPIs can vary 
significantly, see Figure 1. However, there are some similarities 
between BEV and REEV or long-range PHEV batteries, which 
unlock the potential to build a common platform strategy  
for these types of xEV batteries.

Common battery platform:  
Choosing the right strategy
Figure 1 illustrates the energy capacity and discharge C-rate 
of battery packs used in various road vehicle platforms,  
including HEV, PHEV, REEV, and BEV. From this, the following 
key observations can be made:
•	� Vehicle application significantly influences the power- 

to-energy ratio, which in turn dictates the appropriate  
cell selection.

•	� A clear distinction exists between energy-oriented  
applications (e.g., BEVs) and power-oriented applications 
(e.g., short-range PHEVs and HEVs).

•	� REEV and long-range PHEV batteries occupy a middle 
ground between PHEVs and BEVs. Notably, some BEV 
battery packs available on the market meet the typical 
performance requirements of REEVs.

•	� Within a cross-platform battery family, a dedicated REEV 
battery pack is required. However, design synergies with  
existing BEV battery architectures can be leveraged to  
optimize development and integration.

•	� LFP batteries generally offer lower energy density compared 
to NMC batteries, but in some cases, they exhibit even higher 
discharge C-rates.

Several key requirements define the main boundaries for  
feasible battery configurations:
•	� Number of serial cells required to achieve the target  

system voltage (yS xP)
•	� Number of parallel strings needed to meet the desired  

battery energy (yS xP)
•	 Available packaging space
•	 Charging voltage and inverter operating voltage window
•	 State of Charge (SoC) limits (both low and high)
•	� Vehicle power management (for example PHEV/REX serial or 

parallel mode, SoC and power distribution control strategy) 
•	 400 V/800 V architecture and charging strategy

In high-volume series production, minimizing the number of 
cells in a battery pack is generally advantageous. It simplifies 
the assembly process, increases packaging density within the 
battery pack, and reduces the overall number of components 
needed for cell integration, connection, and monitoring.

Given these constraints, relevant 
options for a common battery  
platform across various vehicle 
types include:
•	� Using a single cell type and  

scaling between BEV and REEV 
configurations via parallel strings 
(e.g., 125S 1P for REEV and 125S 2P 
for BEV)

•	� Using multiple cell types with  
scalable dimensions, while  
maintaining a consistent yS xP 
configuration across all xEV  
batteries

•	� Combining both strategies to  
balance flexibility and efficiency

Determining the optimal approach 
is a multi-dimensional challenge. It 
must account not only for technical 
requirements and constraints but 
also for the overall financial business 
case. For smaller production volumes, 
a single cell type may offer the best 
trade-off. In contrast, larger volumes 
may justify the use of dedicated 
cells tailored to specific battery 
types. 

Premium,  
long range BEV

Cost optimized,  
mid range BEV

REEV/long range  
PHEV

Mid/short range  
PHEV

Vehicle platform BEV BEV BEV/ICE ICE

Cell chemistry High energy, mid power:  
e.g. NMC, NMx, (A)SSB

Mid energy, mid power:  
e.g. LMFP, LFP,  
sodium-ion

Mid energy,  
mid-high power:  

LFP, sodium-ion, NMC

Mid/low energy,  
high power: 

e.g. LFP, sodium-ion

Charging strategy Fast DC and AC Fast DC and AC (Fast) DC and AC Often AC,  
no fast charge

Power/energy ratio 2:1 to 3:1 2:1 to 4:1 3:1 to 6:1 > 6:1

Cell energy density 800 – 1,000 Wh/l 300 – 500 Wh/l 250 – 400 Wh/l 250 – 350 Wh/l

Pack voltage (max.) 800 – 1,000 V 400 V/800 V 400 V/800 V 300 – 400 V

Pack energy 100 – 180 kWh 60 – 100 kWh 25 – 60 kWh 8 – 20 kWh

Pack energy density 350 – 450 Wh/l 280 – 330 Wh/l 200 – 250 Wh/l 150 – 200 Wh/l

Pack weight 450 – 700 kg 400 – 600 kg 200 kg – 400 kg 120 – 200 kg

Electric driving range1 650 – 1,200 km 400 – 650 km 160 – 400 km 100 – 160 km 

Cycle lifetime2 750 – 1,500 EFC 1,000 – 2,000 EFC 2,000 – 4,000 EFC 4,000 – 6,000 EFC

Cost prediction 2030+ 80 – 120 €/kWh 55 – 65 €/kWh 65 – 75 €/kWh 75 – 100 €/kWh

2 
Energy and discharge 
rate of various road 
vehicle batteries.

System energy [kWh]

Peak discharge C-rate [-]
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1

LFP, BEV road car

LFP, MHEV road car

LFP, PHEV road car

LMO, BEV road car

Na, BEV road car

NCA, BEV road car

NiMh, BEV road car

NiMh, HEV road car

NMC, BEV road car

NMC, HEV road car

NMC, PHEV road car

PbA, BEV road car

1 
Typical KPIs for xEV batteries.

1) Estimation based on a consumption of ~15 kWh/100km 
2) Equivalent Full Cycle (EFC) - Total charge throughput expressed as full charge/discharge cycle equivalents
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Cell selection:  
Engineering the right fit
Battery cell selection is a critical step  
in battery development, influencing per-
formance, safety, cost, and scalability:
•	� Pouch and cylindrical cells offer  

flexibility, while large prismatic cells 
enable highly efficient packaging.

•	� Chemistry: LFP for robust safety 
and lower cost; NMC for compact 
high-performance applications.

•	� Operation windows: Discharge/ 
charge performance over  
temperature and SoC range.

•	� Supply chain: Local cell production, 
strategic partnerships and circular 
economy are increasingly important.

•	� LFP is cheaper cost-wise than NMC, 
but achieving low market prices  
requires high production volumes. 
Lower production volumes typically 
necessitate off-the-shelf cells.
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Figure 3 illustrates the cell-level discharge power  
density and energy density across various cell types.  
A clear distinction emerges between power-optimized  
cells (High Power, characterized by high C-rates) and  
energy-optimized cells (High Energy, characterized by  
high specific energy in Wh/kg).

For REEVs and long-range PHEVs, the required power-to- 
energy ratio closely resembles that of BEVs. As the electric 
driving range and battery energy content increase, the 
necessary power-to-energy ratio typically decreases. In 
such cases, peak discharge rates of 3 to 5C are generally 
sufficient to meet the power demands for acceleration  
and uphill driving.

While several other parameters must be considered  
to match a cell to its intended battery application, the  
power-to-energy ratio remains a critical factor in cell  
selection and system design.

Discharge power limits especially at lower state of  
charge levels must be aligned with the vehicle  
energy control strategy, enabling sufficient  
performance throughout the  
full electric operating 
range.

4 
Examples and options for FEV's services covering 
REEV or long-range PHEV battery development.

Smart transition: FEV delivers tailored  
battery development services
Typical challenges in transitioning from a full BEV to a REEV, or from 
a short-range PHEV to a long-range PHEV, include the development 
of a flexible battery platform that aligns with the OEM’s vehicle  
architecture across multiple xEV platforms.

Two practical examples of derivative battery development include:
•	� Increasing the energy content of an existing PHEV battery  

while maintaining the same packaging space.
•	� Reducing the packaging space of an existing BEV battery while 

maximizing both energy density and power output.

Innovative architectural concepts such as cell-to-pack (CTP)  
and cell-to-chassis (CTC) enable higher volumetric efficiency and 
reduced system complexity. In addition, modular battery systems 
support scalable platform strategies across various vehicle  
segments.

Depending on the target performance requirements and vehicle- 
specific constraints, FEV offers a staged development approach 
with tailored options for increasing pack energy and/or discharge 
power to meet the demands of future PHEV and REEV applications, 
see Figure 4.

3 
Energy density and 
calculated discharge 
power density of  
various battery cells.Cell specific energy [Wh/kg]

LCO, cylindrical
LCO, pouch
LCO, prismatic
LFP, cylindrical
LFP, pouch
LFP, prismatic
NCA, cylindrical
NCA, prismatic
NCMA, pouch
NMC, cylindrical
NMC, pouch 
NMC, prismatic

Cell specific peak discharge power [W/kg]
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Optimized for HE

Optimized  
for HP
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10 C
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2 C

(M)HEV

BEV
REEV

6,000

5,000

4,000

3,000

2,000

1,000

0

PHEV

eVTOLs

BETTER

Short range PHEV > long range PHEV BEV battery > REEV battery

Base  
battery

< 20 kWh, < 400 V, <= 60 km electric range 80 - 120 kWh, 400/800 V, up to 800 km electric range

Option 1 Cell upgrade  
Cell: Chemistry upgrade;  
format unchanged 
Approach: Integration  
unchanged – C2M2P 
Build space: Installation  
space unchanged

Remove (parallel) string  
(> = 2P architecture) 
Cell: Chemistry, size and  
format unchanged 
Approach: Integration  
unchanged – C2M2P 
Remarks: Power/energy  
ratio unchanged,  
800 V requires DCDC converter

Option 2 Cell upgrade & pack  
optimization
Cell: Chemistry and  
format upgrade 
Approach: Integration  
change to lean module/C2P 
Build space: Installation  
space unchanged

Cell upgrade and  
pack optimization 
Cell: Chemistry and form  
factor unchanged;  
cell capacity reduced 
Approach: Integration  
unchanged – C2M2P 
Remarks: Power/energy  
ratio unchanged

Option 3 BEV battery derivative 
Cell: Chemistry &  
format upgrade 
Approach: Integration  
change to lean module/C2P 
Build space: Installation space 
expansion - REEV battery

Dedicated REEV battery
Cell: Chemistry, format  
and capacity update 
Approach: Integration change  
to lean module/C2P 
Remarks: Use of high power/ 
mid-high energy cell

20 –  
25 kWh

35 – 40 kWh

PHEV  
pack  

energy

2 – 3 C 

4 – 6 C

REEV 
power/
energy

x 0.5
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For further  

FEV Signature Solutions  

see pages 48-49

Concept development:  
Determining the optimal 

solution architecture
Efficient battery design for REEVs  

and long-range PHEVs begins with  
establishing the right architecture  

from the beginning.

Typically, REEV platforms are derived 
from existing BEV architectures, while 

long-range PHEV batteries often evolve 
from short-range PHEV designs based 

on ICE vehicle platforms.

The decision of which cells to use should 
be made early in the development 

process. Utilizing a common cell type 
across multiple battery configurations 
can offer significant benefits in terms 
of development efficiency, validation, 

quality assurance, production, and  
supply chain management. However, 

this approach may also limit  
design flexibility and constrain key  

performance indicators (KPIs).
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As power density increases and batteries are subjected 
to prolonged high-power operation, efficient cooling and 
thermal management become critical to ensure both  
safety and reliability.

In addition to managing heat, the battery design must also 
accommodate the controlled routing of venting gases in 
the event of a thermal incident.

Furthermore, factors such as cell swelling and the required 
spacing between cells — to prevent thermal propagation — 
directly influence the achievable energy and power density 
at the pack level. These constraints also lead to increased 
packaging space requirements, which must be carefully 
considered during the design phase.

To support this process, FEV’s Signature Solution, BATT.code, 
provides an automated tool for battery concept develop-
ment and evaluation, taking into account critical target KPIs 
(see Figure 5). The tool generates various system concept 
variants and module configurations based on different cell 
types, leveraging FEV’s extensive cell database containing 
data on over 1,500 commercially available cells.

In the subsequent phase, the tool enables a cost  
assessment for each technical concept, allowing for the 
identification of the most suitable solution that balances 
performance, technology, and business case requirements. 

BY
Matthias Rudolph 
rudolph_m@fev.com
Janis Vienenkötter 
vienenkoetter@fev.com
Thomas Nemeth 
nemeth_t@fev.com
Remi Stohr 
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Conclusion
REEVs and long-range PHEVs are not merely transitional  
technologies; they are strategic enablers of electrification. 
They offer a practical solution for users who are not yet ready 
or able to switch to BEVs, while still delivering significant  
emissions reductions.

With the right cell chemistry, optimized KPIs, and intelligent 
system integration, REEVs can bridge the gap between  
today’s infrastructure and tomorrow’s zero-emission goals. 

Defining a suitable battery platform and toolbox strategy 
early in the process is essential for identifying optimal  
trade-offs between technical and commercial targets,  
while also accounting for environmental and supply chain 
constraints.

FEV supports its customers throughout all phases  
of battery development, offering expertise in:
•	 Specialized cell scouting
•	 Cell characterization and qualification
•	 Battery platform concept development
•	 Design-to-cost strategies
•	� Detailed mechanical and electrical design, including  

BMS and development of AI-powered battery controls  
and functions

•	 Prototype assembly and manufacturing support
•	 Verification and validation processes

This comprehensive approach ensures that battery  
systems are not only technically robust and cost- 
effective, but also scalable and aligned with the  
specific requirements of each vehicle platform.

Cost  
benchmark 
database

Baseline  
pack cost 

 

Cost per  
layout  

concept 

KPI trade-off 
 
 

Parametric  
pack cost  

model

Cellcost  
model

5 
FEV's BATT.code tool to determine the best fitting battery family architecture.
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Battery concept tool

Methods and tools

Results

Lifetime Fast 
charging

Energy Mass Voltage

Evaluation per layout

Result

Battery layouts per  
cell and vehicle

Cost and KPI assessment
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The rapid growth of range-extended electric  
vehicles (REEVs), particularly in the Chinese  
automotive market, has led to a renewed  
focus on generator systems specifically designed 
for series hybrid architectures. Unlike battery 
electric vehicles (BEVs), which rely solely on  
stored electrical energy, REEVs incorporate  
internal combustion engines (ICEs) that generate 
electricity to extend driving range. This configu-
ration allows for smaller battery packs, mitigates 
range anxiety, and is a key enabler for additional 
use cases such as long-distance trailer towing. 
European manufacturers, having invested heavily 
in BEV platforms in recent years, are now also 
exploring REEVs as modular add-ons.

Chinese OEMs have taken the lead in REEV devel-
opment, often featuring compact ICEs optimized 
for high efficiency within narrow operating areas. 
In Chinese REEVs, the generator set (genset) is 
typically based on a 4-cylinder, 1.5-liter ICE. Be-
cause of the narrow operating area, and despite 
their high efficiency, these engines can be rather 
low cost, as they allow expensive technological 
features that are typically necessary for transient 
operation and low-end torque to be omitted.  
Just like the engines, the generators and inverters 
for REEV applications should be designed for  
the specific requirements of REEV applications. 
This article explores these specific requirements 
for generators and inverters and examines the  
integration challenges, particularly with respect 
to the mechanical interface of ICE and generator.

Mechanical interface of combustion 
engine and electric machine
The mechanical connection between the ICE 
and the generator defines the operating points 
of the generator in terms of torque and speed, 
which are two key parameters of motor design. 
Two connection types are commonly employed: 
direct and geared.

In a direct connection, the electric machine (EM) 
is coupled directly to the ICE crankshaft without 
any gearset. This configuration limits the EM’s 
rotational speed to that of the ICE, typically below 
5,000 rpm. While this approach simplifies pack-
aging and reduces mechanical complexity, it 
restricts the EM’s design freedom and will result 
in unusually low EM design speeds compared to 
current automotive traction drives, which typically 
reach maximum speeds between 12,000 rpm  
and more than 30,000 rpm for some recent  
developments.

Alternatively, a transmission ratio between the 
ICE and EM allows the EM to operate at higher 
speeds, which increases the EM’s power density 
and enables EM downsizing. However, the  
transmission system also consumes package 
space and introduces weight, parasitic losses, 
and complexity to the system, making it  
mandatory to carefully evaluate the pros  
and cons of such a connection.

#7
Efficient range extension–
Next-gen generators  
for hybrid architecture

Range Extender  

Generator

DeepDrive

MG 250
250 Nm	 Peak torque 

150 kW	 Peak power 

180 Nm	 Continuous torque 

120 kW	 Continuous power 

96.9%	 Peak efficiency 

24 kg	� Weight (dry, no coolant) 

Water cooling

powered by the patented  

DeepDrive dual rotor

Option 1  
Direct  

connection

Option 2 
Direct connection 

with damper

Option 3 
High speed EM  

with PGS

Option 4 
High speed EM  

with PGS & damper

Option 5 
High speed EM  

with gearset

Option 6 
High speed EM with 
gearset & damper

Durability &  
reliability + +  + - + - +

NVH  
performance + + -  - • -  - •

Packaging length 
(X-direction) + • • - • -

Packaging  
diameter (Z- and 
Y-direction) 

+ + + + - -

System  
efficiency + + + + + +

Costs + • - -  - - -  -

Weight + • + • • -

Six different arrangements have been investigated:

++ Very beneficial + Beneficial • Neutral - Negative - - Very negative

ICE EM ICE PGS EMICE EM ICE EMPGS ICE G
ea

rs EM EM
ICE G

ea
rs
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BY
Dr. Gereon Hellenbroich 
hellenbroich@fev.com

Conclusion
Dedicated generators for range-extended 
electric vehicles represent an increasingly  
important domain within hybrid powertrain  
engineering. By tailoring motor topology,  
inverter characteristics, and the ICE-EM  
interface to the demands of REEV applications, 
engineers can deliver efficient, compact,  
and cost-effective solutions.
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Besides the direct connection, geared variants with a planetary 
gearset or an offset configuration have been investigated. Planetary 
gearsets are often favored for their compact coaxial layout. They 
offer good packaging efficiency but can be mechanically complex 
and prone to noise generation. Off-axis gearsets, while simpler and 
easier to optimize for good noise, vibration, and harshness (NVH) 
behavior, require more axial space and may complicate integra-
tion into conventional engine bays. However, for special packaging 
environments, an off-axis gearset is frequently used to reach more 
distant package locations of the generator.

All of the above-mentioned systems can be combined with a 
damper, such as a simple torsional damper or a dual mass  
flywheel. When a damper is included between the ICE and EM in 
combination with a gearset, it helps mitigate gear rattle and  
reduces torsional vibrations of the rotor. Omitting the damper  
simplifies the design and reduces cost but increases the risk  
of NVH issues and mechanical wear.

Ultimately, the choice between direct and geared connections 
involves trade-offs between packaging constraints, EM efficiency, 
NVH performance, and overall system cost. Geared systems offer 
more design freedom for the electrical components but demand 
careful integration and validation. Based on FEV’s in-depth devel-
opment experience with many different arrangements, a geared 
system is hardly viable in terms of NVH without an effective damper 
system to accompany it. Alternatives such as special gear coatings 
or pre-loaded split gears have not been sufficient for the demand-
ing NVH requirements. A well-designed direct connection is robust, 
cost-effective, and can result in highly competitive overall systems.

Generator-specific electric-machine  
requirements
Generators in REEVs differ significantly from traction motors in terms 
of operational demands and design priorities. Where efficiency is of 
utmost importance for traction drives, low cost often takes greater 
priority with REEV generators due to their low operating time over 
a vehicle life and the limited impact of small efficiency deficits on 
overall energy consumption.

Unlike traction motors, which must deliver high torque across a  
wide speed range and support transient, as well as high speed  
operation, generator EMs operate under more predictable  
and constrained conditions. Low-speed operation is generally  
unnecessary, except during engine start-up. In configurations  
without a speed-increasing gear ratio, maximum speed is also  
limited, typically capped below 5,000 rpm.

Power requirements are modest, often below 100 kW, with a strong 
emphasis on continuous power output, especially for long-distance 
highway driving scenarios. This enables downsizing of the EM as 
long as effective cooling strategies are employed.

Packaging constraints also  
influence motor geometry. 
When working with conven- 
tional inline engines, the crank-
train envelope will result in an 
ICE interface diameter at rear 
face of block of approximately 
300 mm. Motors of short axial 
length but rather large diame-
ter - often referred to as “pan-
cake” designs - are preferred. 
These geometries facilitate 
coaxial integration and reduce 
overall system volume.

Resulting influence  
on motor topology
Currently, permanent magnet  
synchronous machines 
(PMSMs) are the preferred 
motor type for REEV generator 
applications due to their high 
efficiency and compact size, 
and because availability of 
rare earth materials is no major 
issue in China.

Safety and efficiency concerns 
under dragged condition are  
less relevant in generator 
applications, further support-
ing the use of PMSMs. Unlike 
traction motors, PMSMs in REEVs 
do not require extended field 
weakening capabilities due  
to lower maximum speeds, 
simplifying control and reduc-
ing inverter complexity.

Among PMSM variants, designs  
with short axial length are of 
particular interest. Advanced 
topologies such as axial flux 
and dual rotor radial flux  
machines have larger diam-
eters but short length and do 
provide their power at low 
speeds and high torques, an 
ideal match for range extenders  
without gearsets. Axial flux 
machines have already made 

their way into first series applications in China, 
and more widespread use of these topologies is 
expected for the future.

The generator unit shown on page 44 is based on 
a dual-rotor radial flux electric machine technol-
ogy which has been co-developed by DeepDrive 
and FEV and offers highly attractive properties  
in terms of efficiency, packaging, and costs. It 
features a fully integrated 800 V silicon carbide 
(SiC) inverter; and with 120 kW of continuous 
power, it can cover even the most demanding 
applications.

As an alternative to rare-earth-based PMSMs,  
ferrite-based PMSMs are gaining attention  
for their cost-effectiveness and supply chain 
resilience. Although ferrite magnets offer lower 
energy density than rare-earth alternatives,  
careful magnetic design can compensate for 
performance limitations. With powers below  
100 kW and low cost as one major criterion, ferrite 
magnets are an interesting option for generators, 
also in combination with advanced topologies.

Inverter design considerations
One major parameter for inverter design is the 
voltage level of the battery. Currently, 400 V and 
800 V systems are found in the market, with a 
trend towards 800 V for increased efficiency and 
charging speeds. However, as charging speed  
is less relevant for REEVs due to the presence of 
the range extender, manufacturers who offer 
separate BEV and REEV models may use different 
voltage architectures for each (for example, 800 V  
for BEVs and 400 V for REEVs) to achieve greater 
cost efficiencies. If a vehicle model is offered both 
as a BEV and as a REEV, the voltage level typically 
remains common across both versions to  
leverage synergies.

As REEV applications focus on continuous  
power and often lower e-machine 
speeds, the advantages of SiC power 
modules, such as efficiency at  
part-load and high switching fre-
quencies, are not as relevant as 

they are for traction applications. IGBTs with  
SiC diodes may therefore be an attractive option, 
especially for 400 V systems.

Overall, the lower power level of generators  
compared to traction drives results in lower  
currents and consequently in smaller inverters.  
Thermal performance must be aligned with 
steady-state operation rather than transient 
peaks. As a generator is less safety-critical (no 
risk of significant overspeed, no risk of extended 
dragging, no risk of blocking the wheels), simpler 
safety concepts may be implemented.

Thermal and system-level  
considerations
Thermal management is a critical aspect of 
generator system design, not only because of 
the high continuous powers, but also because of 
the additional thermal load from the combustion 
engine. Liquid cooling is almost always required, 
and electric machines are either water- or  
oil-cooled. Cooling strategies must be integrated 
into the overall vehicle thermal architecture,  
ensuring consistent performance across all  
ambient conditions.

System-level co-design is essential to achieve 
optimal performance. The EM, inverter, and control  
logic must be developed in tandem, ensuring 
that each subsystem complements the others. 
This approach avoids over-specification, reduces 
cost, and enhances performance.



Hybrid controls for  
non-road machinery
The transformation toward climate-neutral drives 
is no longer limited to road traffic. Construction, 
agricultural, and other non-road mobile  
machinery (NRMM) are also faced with the task  
of reducing emissions while ensuring maximum 
reliability under tough operating conditions and 
in remote areas. With its Hybrid Control Unit 
(HCU), FEV provides a proven software solution 
that is specifically tailored to the requirements  
of this industry.

What makes it unique is that it is based on a 
function library for hybrid drives that has been 
extensively tested throughout the automotive  
industry and used repeatedly in series produc-
tion. FEV has specifically expanded this library  
to include functions for off-highway applications, 
allowing even complex hybrid topologies to  
be controlled efficiently – from wheel loaders  
and excavators to telescopic handlers and  
agricultural machines.

GenAISys – Redefining  
propulsion systems design
Developing tomorrow’s propulsion systems 
means facing an ever-growing challenge: 
complexity. Countless hardware options, 
control strategies, and regulatory demands 
create a multi-dimensional design space 
that is hard to manage with conventional 
methods. FEV’s GenAISys is an AI-integrated  
system development methodology that 
changes the game.

With GenAISys, FEV provides the only end-to- 
end AI-enabled development framework 
that seamlessly connects requirement 
analysis, use-case definition, architecture 
recommendations, system sizing, hardware 
parametrization, and control strategy inte-
gration – all in a fully virtualized environment. 
The result: a single, intelligent development 
loop that ensures the right system design, in 
the right architecture, at the right size, with 
the right controls – from the very beginning.

Unique customer benefits:
•	� Faster development – automated, AI-driven  

workflows drastically shorten project timelines  
by avoiding late design iterations.

•	� Lower cost – early virtualization and “right-sizing” 
prevent over-engineering and reduce testing effort.

•	� Better performance – holistic optimization balances 
efficiency, durability, and driving experience.

•	� Future-proof integration – GenAISys fits into  
existing standards such as A-SPICE, and supports 
cross-industry applications (automotive,  
aerospace, energy, rail).

Unlike traditional tools or isolated AI approaches,  
GenAISys is holistic, proven, and unique in the market.  
It combines decades of system expertise with ad-
vanced AI methods to deliver validated design and 
control strategies that no competitor can match.

With GenAISys, FEV enables its customers to master 
complexity, reduce risk, and unlock new efficiency  
potential – establishing it as a true differentiator for 
the future of propulsion development.

Further FEV Signature Solutions:  
fev.group/solutions

#8 
SPECTRUM regularly  
presents a selection of  
unique FEV solutions

Customers benefit from short project lead times, 
as demonstrators can be put into operation 
quickly and new concepts can be validated  
immediately. The software covers all core areas:  
from diagnostics, machine coordination, and 
torque management to predictive energy and 
work control. Transitions between operating 
states are also intelligently controlled, taking into 
account efficiency, driving comfort, and NVH 
optimization as well as more intelligent machine 
control. Thus, FEV creates the basis for maximum 
uptime in daily use.

In addition to preconfigured function packages, 
the company offers flexible licensing (for example  
one-time models) and customer-specific  
adaptations – for both prototypes and series  
applications. A “white box” approach is available 
as an option, allowing manufacturers to use  
the solution as a basis for their own further  
developments. This is complemented by a broad 
portfolio of patented developments that secures 
customers' innovative edge.

With its hybrid control software, FEV is taking a 
decisive step forward in the decarbonization of 
off-highway applications – practical, scalable, 
and directly transferable to real machines.
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